Room Temperature

Researchers demonstrate non-volatile control of spin-to-charge conversion in germanium telluride

A team of researchers at Politecnico di Milano, University Grenoble Alpes and other institutes worldwide have recently demonstrated the non-volatile control of the spin-to-charge conversion in germanium telluride, a known Rashba semiconductor, at room temperature. Their work could have important implications for the future development of spintronic devices.

The Rashba effect, discovered in 1959, entails a momentum-independent splitting of spin bands in two-dimensional condensed matter systems. In ferroelectric Rashba semiconductors, this effect can be reversed by switching the direction of the ferroelectric polarization. The idea that Rashba spin-splitting in these materials can be controlled was confirmed by a series of first-principle calculations by S. Picozzi and later validated in spectroscopic experiments using germanium telluride, which is thus often considered the 'prototype' of the ferroelectric Rashba class of semiconductors.

Read the full story Posted: Nov 14,2021

Researchers use graphene and other 2D materials to create a spin field-effect transistor at room temperature

Researchers at CIC nanoGUNE BRTA in Spain and University of Regensburg in Germany have recently demonstrated spin precession at room temperature in the absence of a magnetic field in bilayer graphene. In their paper, the team used 2D materials to realize a spin field-effect transistor.

Sketch of a graphene-WSe2 spin field-effect transistor imageSketch of the spin field-effect transistor. Image from article

Coherently manipulating electron spins at room temperature using electrical current is a major goal in spintronics research. This is particularly valuable as it would enable the development of numerous devices, including spin field-effect transistors. In experiments using conventional materials, engineers and physicists have so far only observed coherent spin precession in the ballistic regime and at very low temperatures. Two-dimensional (2D materials), however, have unique characteristics that could provide new control knobs to manipulate spin procession.

Read the full story Posted: Sep 08,2021

New 2D magnet that operates at room temperature could boost spintronic memory and quantum computing

Researchers from Berkeley Lab, UC Berkeley, UC Riverside, Argonne National Laboratory, Nanjing University and the University of Electronic Science and Technology of China, have developed an ultrathin magnet that operates at room temperature. This development could lead to new applications in computing and electronics - such as high-density, compact spintronic memory devices - and new tools for the study of quantum physics.

"We're the first to make a room-temperature 2D magnet that is chemically stable under ambient conditions," said senior author Jie Yao, a faculty scientist in Berkeley Lab's Materials Sciences Division and associate professor of materials science and engineering at UC Berkeley. "This discovery is exciting because it not only makes 2D magnetism possible at room temperature, but it also uncovers a new mechanism to realize 2D magnetic materials," added Rui Chen, a UC Berkeley graduate student in the Yao Research Group and lead author on the study.

Read the full story Posted: Jul 20,2021

Researchers achieve room-temperature electron spin polarization exceeding 90% in an opto-spintronic semiconductor nanostructure

A team of researchers from Sweden, Finland and Japan have designed a semiconductor component in which information can be efficiently exchanged between electron spin and light at room temperature and above.

Developments in spintronics in recent decades have been based on the use of metals, and these have been highly significant for the possibility of storing large amounts of data. There would, however, be several advantages in using spintronics based on semiconductors, in the same way that semiconductors form the backbone of today's electronics and photonics.

Read the full story Posted: Apr 14,2021

Researchers discover the existence of elusive spin dynamics in quantum mechanical systems

Researchers from Oak Ridge National Laboratory (ORNL), University of California and Lawrence Berkeley National Laboratory have discovered the existence of elusive spin dynamics in quantum mechanical systems.

The team successfully simulated and measured spins - magnetic particles, which can exhibit a motion known as Kardar-Parisi-Zhang in solid materials at varying temperatures. Up until now, scientists have only found evidence of the spin dynamics in soft matter and other classical materials.

Read the full story Posted: Apr 03,2021

Researchers use unique material to control spin polarization

Researchers used the Advanced Photon Source (APS), a U.S. Department of Energy Office of Science User Facility at DOE’s Argonne National Laboratory, to study ways to manipulate electron spins and develop new materials for spintronics. The research team, led by Chang-Beom Eom at the University of Wisconsin-Madison, designed a new material that has three times the storage density and uses much less power than other spintronics devices.

Not many of these types of materials exist, especially ones that work at room temperature like this one. If the new material can be perfected, it could aid in the creation of more efficient electronic devices with less tendency to overheat. This is particularly important for advancing the development of low-power computing and fast magnetic memory.

Read the full story Posted: Mar 30,2021

University of Groningen team takes a step towards analogue spintronic devices

University of Groningen researchers have measured the presence of electron-spin-dependent nonlinearity in a van der Waals heterostructure spintronic device. The team went on to demonstrate its application for basic analog operations such as essential elements of amplitude modulation and frequency sum (heterodyne detection) on pure spin signals, by exploiting the second-harmonic generation of the spin signal due to nonlinear spin injection.

New discovery brings analogue spintronic devices closer imageGraphene (light green) with boron nitride (blue) on top. Measuring points indicated in orange.

The researchers also showed that the presence of nonlinearity in the spin signal has an amplifying effect on the energy-dependent conductivity-induced nonlinear spin-to-charge conversion effect. The interaction of the two spin-dependent nonlinear effects in the spin-transport channel leads to a highly efficient modulation of the spin-to-charge conversion effect, which in principle can also be measured without using a ferromagnetic detector. These effects are measured both at room and low temperatures, and are suitable for their applications as nonlinear circuit elements in the fields of advanced spintronics and spin-based neuromorphic computing.

Read the full story Posted: Dec 27,2020

Researchers design a spin-engine that uses spintronics to harvest energy from heat at room temperatures

An international team of researchers from France and Sweden designed a new concept of an energy harvesting engine based on spintronics and quantum thermodynamics. The basic idea is to use electron spin to harvest thermal fluctuations at room temperature.

Spin-polarized energy landscape of the spin-engine photo

The researchers make use of the fact that paramagnetic centers, or atom-level magnets, fluctuate their spin orientation due to heat. In the so called spin-engine, the a spontaneous bias voltage V appears between the electrodes, and thus a spontaneous current flows once the electrical circuit is closed.

There are still many challenges to create such devices (the team made some initial experiments) - but the researchers say that this concept could create chips that continuously produce electrical power with a power density that is 3x greater than raw solar irradiation on Earth.

Read the full story Posted: Oct 07,2019

Will perovskites hold the key to spin-based quantum computing?

Researchers from the Energy Department’s National Renewable Energy Laboratory (NREL), quite accidentally, discovered that perovskite materials, grown using solution processing, exhibit the optical Stark effect at room temperatures.

The NREL team used the Stark effect to remove the degeneracy of the excitonic spin states within the perovskite sample. The optical Stark effect can be used to create promising technologies, including the potential to be used as an ultrafast optical switch. In addition, it can be used to control or address individual spin states, which is needed for spin-based quantum computing.

Read the full story Posted: Sep 06,2016

Proximity-induced magnetism promising for room-temperature spintronics

Researchers from MIT and colleagues from the US, Germany France and India discovered that when you combine a topological insulator (bismuth selenide) with a magnetic material (europium sulfide) you create a material that one can can control its magnetic properties. The new material retains the electronic property of the topological insulator and also the full magnetization capabilities of the magnetic material.

Ferromagnetic insulator and topological insulator (MIT)

The researchers were surprised by the stability of that effect - in fact the material exhibited those great properties at room temperatures, which means that this hybrid material can be used to create spintronics devices.

Read the full story Posted: May 10,2016