Graphene-based spintronics could get a boost from interaction with palladium diselenide
Researchers from ICN2, ICMAB-CSIC and the Bulgarian Academy of Science have shown how the interaction with palladium diselenide (PdSe₂) can modify and enhance graphene’s spintronic performance. The team's finding improve existing understanding of spin dynamics in graphene-based van der Waals heterostructures and could be key for developing more efficient computing devices.
Van der Waals heterostructures are materials formed by combining layers of different ultra-thin materials stacked on top of each other. In recent years, these structures have proven to be very useful for studying and understanding unusual physical phenomena, making them promising candidates for the development of new technologies. The new study analyzed the interactions that occur in a graphene and palladium diselenide (PdSe₂) heterostructure. The team stresses: "Our results showed that PdSe₂ can induce significant changes in the spin transport properties and dynamics of graphene, providing new possibilities for controlling information-carrying spin currents”. These findings constitute an important step forward in elucidating spin physics in van der Waals heterostructures and could allow for spin-logic devices in the future.