A material just six atoms thick in which electrons appear to be guided by conflicting laws of physics depending on their direction of travel has been discovered by a team of physicists at the University of California, Davis. Working with computational models, the team has found that the electrons in a thin layer of vanadium dioxide sandwiched between insulating sheets of titanium dioxide exhibit one set of properties when moving in forward-backward directions, and another set when moving left to right.

With its unique properties, the material could open up a new world of possibilities in the emerging field of spintronics technology, which takes advantage of the magnetic as well as the electric properties of electrons in the design of novel electronic devices.

The team claims that a big advantage that the vanadium lattice has over the one-layer thick graphene is greater rigidity, which will make it easier to etch into experimental or functional shapes.

Tags: