Quantum computing enables characterization of magnetic materials

A multi-institutional team which included researchers from the Department of Energy's Oak Ridge National Laboratory, the University of Tennessee, Purdue University and D-Wave Systems, succeeded in generating accurate results from materials science simulations on a quantum computer that can be verified with neutron scattering experiments and other practical techniques.

The researchers used the power of quantum annealing, a form of quantum computing, by embedding an existing model into a quantum computer. Their unique approach proved that quantum resources are capable of studying the magnetic structure and properties of materials, which could lead to a better understanding of spin liquids, spin ices and other novel phases of matter useful for data storage and spintronics applications.

Researchers demonstrate the potential of a new quantum material for creating two spintronic technologies

Antiferromagnetic (AFM) spintronics are devices or components for electronics that couple a flowing current of charge to the ordered spin 'texture' of specific materials. The successful development of AFM spintronics could have important implications, as it could lead to the creation of devices or components that surpass Moore's law. But it seems that finding materials with the exact characteristics necessary to fabricate AFM spintronics is highly challenging.

Researchers at the Lawrence Berkeley National Laboratory, UC Berkeley and the National High Magnetic Field Laboratory in Tallahassee have recently identified a new quantum material (Fe1/3 + δNbS2) that could be used to fabricate AFM spintronic devices. In their most recent papers, they demonstrated the feasibility of using this material for two AFM spintronics applications.

Light-induced twisting of Weyl nodes switches on giant electron current

Scientists at the U.S. Department of Energy's Ames Laboratory, along with collaborators at Brookhaven National Laboratory and the University of Alabama at Birmingham, have discovered a light-induced switch that twists the crystal lattice of the material, switching on a giant electron current that appears to be nearly dissipationless. The discovery was made in a category of topological materials that holds great promise for spintronics, topological effect transistors, and quantum computing.

Weyl and Dirac semimetals can host exotic, nearly dissipationless, electron conduction properties that take advantage of the unique state in the crystal lattice and electronic structure of the material that protects the electrons from doing so. These anomalous electron transport channels, protected by symmetry and topology, don't normally occur in conventional metals such as copper. After decades of being described only in the context of theoretical physics, there is growing interest in fabricating, exploring, refining, and controlling their topologically protected electronic properties for device applications. For example, wide-scale adoption of quantum computing requires building devices in which fragile quantum states are protected from impurities and noisy environments. One approach to achieve this is through the development of topological quantum computation, in which qubits are based on "symmetry-protected" dissipationless electric currents that are immune to noise.

Researchers find that thickness of magnetic materials can help control their spin dynamics

Researchers at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Yale University have demonstrated the ability to control spin dynamics in magnetic materials by altering their thickness. The new study could lead to smaller, more energy-efficient electronic devices.

“Instead of searching for different materials that share the right frequencies, we can now alter the thickness of a single material—iron, in this case—to find a magnetic medium that will enable the transfer of information across a device,” said Brookhaven physicist and principal investigator Valentina Bisogni.

Researchers study the long-range transport of magnetic hedgehogs

Researchers have recently demonstrated the long-range transport of magnetic hedgehogs, 3D topological spin structures that are often observed in common magnets. Their work could have important implications for the development of spintronic devices.

Nonlocal transport measurement of hedgehog currents imageNonlocal transport measurement of hedgehog currents in a three-dimensional insulating magnet. Image from article

Magnetic insulators are a class of materials widely used worldwide, mainly due to their ability to conduct electrical charges. Just like metals conduct electrical charges, magnetic insulators can conduct spins. Nonetheless, as spins are rarely conserved in materials and tend to disappear over long distances, so far, using magnetic insulators to achieve long-range transport has proved highly challenging.

IMEC and Intel researchers develop spintronic logic device

Researchers at imec and Intel, led by PhD candidate Eline Raymenants, have created a spintronic logic device that can be fully controlled with electric current rather than magnetic fields. The Intel-imec team presented its work at the recent IEEE International Electron Devices Meeting (IEDM).

An electron’s spin generates a magnetic moment. When many electrons with identical spins are close together, their magnetic moments can align and join forces to form a larger magnetic field. Such a region is called a magnetic domain, and the boundaries between domains are called domain walls. A material can consist of many such domains and domain walls, assembled like a magnetized mosaic.

New principle may open the door to spin memory devices

A research team, led by Dr. Kim Kyoung-Whan at the Center for Spintronics of the Korea Institute of Science and Technology (KIST), has proposed a new principle which could give a boost to spin memory devices.

Conventional memory devices are classified into volatile memories, such as RAM, that can read and write data quickly, and non-volatile memories, such as hard-disk, on which data are maintained even when the power is off. In recent years, related academic and industrial fields have been working to accelerate the development of next-generation memory that is fast and capable of maintaining data even when the power is off.