Antiferromagnetism - Page 2

Researchers report room-temperature magnetic phase transition in an electrically tuned van der Waals ferromagnet

Researchers at China's Hefei University of Technology, University of Science and Technology of China, South China University of Technology, Chinese Academy of Sciences (CAS), Anhui University, Australia's RMIT University, University of New South Wales, Saudi Arabia's Al-Baha University and University of Jeddah have reported magnetism in a quasi-2D magnet Cr1.2Te2, observed at room temperature (290 K). 

By intercalating protons into van der Waals ferromagnet Cr1.2Te2 nanoflakes, the group of researchers successfully induced a room-temperature magnetic phase transition from ferromagnetism to antiferromagnetism.

Read the full story Posted: Nov 08,2023

Researchers report enhanced thermally-activated skyrmion diffusion with tunable effective gyrotropic force

Researchers at Johannes Gutenberg University Mainz, the University of Konstanz and Tohoku University in Japan have increased the diffusion of magnetic whirls, so called skyrmions, by a factor of ten.

Science often does not simply consider the spin of an individual electron, but rather magnetic whirls composed of numerous spins. These whirls, called skyrmions, emerge in magnetic metallic thin layers and can be considered as two-dimensional quasi-particles. On the one hand, the whirls can be deliberately moved by applying a small electric current to the thin layers; on the other hand, they move randomly and extremely efficiently due to diffusion. The feasibility of creating a functional computer based on skyrmions was demonstrated by a team of researchers from Johannes Gutenberg University Mainz (JGU), led by Professor Dr. Mathias Kläui, using an initial prototype. This prototype consisted of thin, stacked metallic layers, some only a few atomic layers thick.

Read the full story Posted: Sep 12,2023

Researchers report anomalous dynamics of non-collinear antiferromagnets

Researchers from MIT and Tohoku University have reported a representative effect of the anomalous dynamics at play when an electric current is applied to a class of magnetic materials called non-collinear antiferromagnets. 

Non-collinear antiferromagnets have properties distinct from conventional magnetic materials—in traditional collinear magnets, the magnetic moments align in a collinear fashion. However, in non-collinear ones, the moments form finite angles between one another. Scientists describe these non-collinear arrangements as a single order parameter, the octupole moment, which has been demonstrated to be critical for determining the exotic properties of the materials.

Read the full story Posted: Aug 06,2023

Researchers report unusual motion across a layered magnetic material tied to changing its electron spin

A team of researchers from the DOE/Argonne National Laboratory and U.S. additional laboratories and universities have reported a mechanical response across a layered magnetic material tied to changing its electron spin. This response could have important applications in nanodevices requiring ultra-precise and fast motion control.

A little over a century ago, physicists Albert Einstein and Wander de Haas reported a surprising effect in ferromagnets: if you suspend an iron cylinder from a wire and expose it to a magnetic field, it will start rotating if you simply reverse the direction of the magnetic field. "Einstein and de Haas's experiment is almost like a magic show," said Haidan Wen, a physicist in the Materials Science and X-ray Science divisions of the U.S. Department of Energy's (DOE) Argonne National Laboratory. ​"You can cause a cylinder to rotate without ever touching it."

Read the full story Posted: Aug 03,2023

Researchers report electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide

Researchers from Purdue University, Pennsylvania State University and Japan's National Institute for Materials Science (NIMS) have reported electrically tunable moiré magnetism in twisted double bilayers (a bilayer on top of a bilayer with a twist angle between them) of layered antiferromagnet chromium triiodide. 

Using magneto-optical Kerr effect microscopy, the team observed the coexistence of antiferromagnetic and ferromagnetic order with non-zero net magnetization—a hallmark of moiré magnetism. Such a magnetic state extends over a wide range of twist angles (with transitions at around 0° and above 20°) and exhibits a non-monotonic temperature dependence. The researchers also demonstrated voltage-assisted magnetic switching. The observed non-trivial magnetic states, as well as control via twist angle, temperature and electrical gating, are supported by a simulated phase diagram of moiré magnetism.

Read the full story Posted: Jun 20,2023

Scientists predict "parallel circuits" of spin currents in antiferromagnets

A group of physicists, led by Prof. SHAO Dingfu from the Hefei Institutes of Physical Science (HFIPS) of the Chinese Academy of Sciences (CAS), has predicted "parallel circuits" of spin currents in antiferromagnets, which can accelerate spintronics.

Spin-polarized electric currents play a central role in spintronics, due to the capabilities of manipulation and detection of magnetic moment directions for writing and reading 1s and 0s. Currently, most spintronic devices are based on ferromagnets, where the net magnetizations can efficiently spin polarize electric currents. Antiferromagnets, with opposite magnetic moments aligned alternately, are not quite as investigated but may promise even faster and smaller spintronic devices.

Read the full story Posted: Jun 11,2023

Researchers demonstrate electrical creation and control of antiferromagnetic vortices

Researchers from the University of Nottingham, Diamond Light Source, Czech Academy of Sciences and The University of New South Wales have shown for the first time how electrical creation and control of magnetic vortices in an antiferromagnet can be achieved, a discovery that could increase the data storage capacity and speed of next generation devices.

The team used magnetic imaging techniques to map the structure of newly formed magnetic vortices and demonstrate their back-and-forth movement due to alternating electrical pulses. 

Read the full story Posted: May 17,2023

Researches examine coherent antiferromagnetic spintronics

Researchers from Tohoku University in Japan, University of California Riverside and the Massachusetts Institute of Technology detail a decade of research advancements in the emerging field of antiferromagnetic spintronics that holds the promise of moving beyond today’s world of electrons moving through semiconductors.

As computers and other electronic devices become faster and more powerful, they are coming closer to a physical limitation caused by heat generated by the electrons that carry information as they move through semiconductors. “Making heat is a fundamental limit that will prevent the further development of electronic devices. So, we are basically hitting a bottleneck because our computers are way faster than they used to be two decades ago,” said Ran Cheng, an assistant professor of electrical and computer engineering with UCR’s Bourns College of Engineering. Workarounds like cooling systems can go only so far as artificial intelligence, machine learning, video streaming, and other applications demand faster and faster computer processing and memory retrievals.

Read the full story Posted: May 10,2023

Researchers create a mixed magnon state in an organic hybrid perovskite material by utilizing the Dzyaloshinskii-Moriya-Interaction (DMI)

Researchers from North Carolina State University, University of North Carolina at Chapel Hill, Massachusetts Institute of Technology (MIT),  National Renewable Energy Laboratory, Duke University, Wayne State University and The Hong Kong University of Science and Technology have created a mixed magnon state in an organic hybrid perovskite material by utilizing the Dzyaloshinskii-Moriya-Interaction (DMI).

The resulting material has potential for processing and storing quantum computing information. The work also expands the number of potential materials that can be used to create hybrid magnonic systems.

Read the full story Posted: Apr 06,2023

Researchers review achievements in antiferromagnetic spintronics

Researchers from Tohoku University, University of California Riverside and Massachusetts Institute of Technology (MIT) have highlighted a series of critical achievements in antiferromagnetic spintronics (including their own contributions), revealing an emerging frontier distinguished by the coherent spin dynamics of antiferromagnets. 

Within antiferromagnetic spintronics, scientists have exerted a lot of efforts on the switching and readout of static magnetic order. But coherent spin dynamics, the key to exploring the wave features of spins and integrating spintronics with quantum and neuromorphic technologies, has only received attention very recently. "The coherent spin dynamics of antiferromagnets exhibits a lot more intriguing features than that of ferromagnets," says Jiahao Han, a JSPS Research Fellow working at the Research Institute of Electrical Communication (RIEC), Tohoku University. "By harnessing this unique property, the team has been pursuing breakthroughs that eventually form a new chapter named coherent antiferromagnetic spintronics."

Read the full story Posted: Mar 27,2023