Improved magnetic-semiconductor bilayer for room-temperature spintronics

Funded by the US National Science Foundation, researchers at Ohio University and Ohio State University have created an improved magnetic-semiconductor bilayer that they claim solves a problem spintronics scientists have been invest- igating for years ("Reconstruction Control of Magnetic Properties during Epitaxial Growth of Ferromagnetic MnGa on Wurtzite GaN(0001)", Lu et al (2006) Phys. Rev. Lett. 97, 146101).

Unlike classic or vintage electronics that operate on electronic charges, spin-based electronics focuses on the spin of electrons to carry and store information. Spintronics is predicted to revolutionize the electronics industry, say the researchers, by making devices faster, improving storage capacity and reducing the amount of power needed to run them, but the technology has not yet been widely applied, because due to difficulty controlling, manipulating and measuring the electrons.

Led by postdoctoral fellow Erdong Lu, together with Arthur Smith and David Ingram, of Ohio University of Ohio University as well as J W Knepper and F Y Yang of Ohio State University, the team has created an effective interface between a semiconductor and ferromagnetic metal. Formed from binary ferromagnetic manganese gallium (MnGa) crystalline thin films epitaxially grown on wurtzite gallium nitride (0001) surfaces using RF plasma molecular beam epitaxy, the two-layer sandwich nearly eliminates any intermixing of the two layers and allows the spin to be 'tuned'.

Read more here 

Posted: Oct 06,2006 by Ron Mertens