Researchers use lasers to get closer to realizing spin-based transistors
Researchers have found that lasers can generate stable patterns of electron spins in a thin layer of semiconductor material, a discovery that may help lead to advanced spin-based memory and computing. The scientists have revealed that lasers could generate complex stable patterns of electron spins called “spin textures” in thin films of semiconductors. These spin textures could help lead to what may be the holy grail of spintronics, a superefficient spin-based transistor.
The new findings are based on how light has momentum, just as a physical object moving through space does, even though light does not have mass. This means that light shining on an object can exert a force. Whereas the linear momentum of light supplies a push in the direction that light is moving, the angular momentum of light applies torque.