JGU establishes a new spintronics junior research group

The Johannes Gutenberg University Mainz (JGU), with funding from the German Research Foundation (DFG), is setting up an Emmy Noether independent junior research group to study spintronics.

Skyrmions generated by hairy balls image

Specifically, the TWIST (Topological Whirls in SpinTronics) work group will study skyrmions - magnetic "particles" or nodes within a magnetic texture. Skyrmions are more stable than other magnetic structures and react particularly readily to spin currents - which makes them interesting for spintronics applications.

Read the full story Posted: Oct 13,2016

Laser pulses can be used to create strong spin currents

Researchers from TU Wien designed a method to create extremely strong spin currents using ultra-short laser pulses.

Laser pulse hits nickel on silicon photo

Using computer simulations, the researchers discovered that when short laser pulses hit a thin layer of nickel on a silicon substrate, the electrons accelerate toward the silicon, which builds an electric field on the interface of the two materials. This stops the current, but the spin is still transported. the spin-up electrons move freely, while the spin-down electrons have a much higher probability of being scattered at the nickel atoms. This creates many spin-up electrons in the silicon - effectively creating a spin current in the silicon.

Read the full story Posted: Jun 02,2016

Researchers detect magnetic fluctuations with pure spin current

Researchers from Japan and France managed to detect magnetic fluctuations with pure spin current. This has been done in a much more sensitive way than conventional magnetization measurements.

Spin-charge conversion in a spin glass system image

The researchers used spin glass, a typical frustrated system where a small amount of impurities with magnetic moments is randomly distributed in a nonmagnetic host metal. At high temperatures, the magnetic moments are fluctuating with a very high speed. As the temperature approaches the spin glass temperature (Tg), the fluctuations become slower and then the magnetic moments are frozen at Tg.

Read the full story Posted: Dec 17,2015

Researchers discover that pure-spin current is possible in insulators

Researchers from the US DoE's Argonne National Laboratory discovered that a pure-spin current can be created in materials that are insulators. Previously it was thought that such a current is possible in magnetic materials only.

SSE in Paramagnets image

The researchers generated a magnetic field on a layer of ferromagnetic YIG (yttrium iron garnet) on a substrate of paramagnetic GGG (gadolinium gallium garnet). To their surprise, the spin current was stronger in the GGG than it was in the YIG. They actually do not know how this works - and understanding it is the next step in their research.

Read the full story Posted: Jul 27,2015

New room-temperature tunnel device developed using graphene as tunnel barrier and transport channel

Researchers from the U.S. Naval Research Laboratory (NRL) developed a new type of room-temperature tunnel device structure in which the tunnel barrier and transport channel are both made of graphene.

NRL scientists use graphene as tunnel barrier for spintronics image

In this new design, hydrogenated graphene acts as a tunnel barrier on another layer of graphene for charge and spin transport. The researchers demonstrated spin-polarized tunnel injection through the hydrogenated graphene, and lateral transport, precession and electrical detection of pure spin current in the graphene channel. The team sasy that the spin polarization values are higher than those found using more common oxide tunnel barriers, and spin transport at room temperature.

Read the full story Posted: Jul 17,2015

Spin current shown to travel over half a micrometer in a thin doped germanium film

Researchers from Japan's Kyoto University and Osaka University have demonstrated that spin currents can travel more than half a micrometer on a thin doped-germanium sheet. Up until now this has only been demonstrated in very low temperatures (below 225 Kelvin).

Spin-transport in room-temperature germanium image

Germanium has a higher electron mobility than silicon and a particular lattice symmetry that should reduce much of the electrons spin relaxation. But the material is not magnetic and so measuring spin transport is not easy because spin currents have to be created in a magnetic material and injected into germanium.

Read the full story Posted: May 15,2015

Researchers show that plasmon resonance can be useful for spintronics applications

Researchers from Tohoku University and the Japan Science and Technology Agency (JST) have confirmed that surface plasmon resonance can be used to generate spin currents.

Tohoku JST plasmon resonance for spintronics

Surface plasmon resonance happens when electrons are hit by photos and react by vibrating. It is commonly used in bio-sensors and lab-on-a-chop systems. The researchers have shown that directing light on a certain magnetic material, a spin current can be produced and controlled.

Read the full story Posted: Jan 16,2015

NRL scientists report the highest spin injection values yet measured for graphene

Researchers from the US Naval Research Laboratory (NRL) developed a new type of tunnel device structure in which both the tunnel barrier and transport channel are made from graphene. The researchers say that this device features the highest spin injection values yet measured for graphene, and this design could pave they way towards highly functional and scalable graphene electronic and spintronic devices.

The tunnel barrier is made from dilutely fluorinated graphene while the charge and transport layer is made from graphene. The researcher demonstrated tunnel injection through the fluorinated graphene, and lateral transport and electrical detection of pure spin current in the graphene channel.

Read the full story Posted: Jan 31,2014

Spin Hall magnetoresistance discovered using an insulating magnet

Researchers from Tohoku Univeristy generated a new kind of magnetoresistance in a system with an insulating magnet. They call this new phenomenon Spin Hall magnetoresistance (SMR). In SMR, the current does not need to pass through a magnet. The researchers developed a system in which a normal metal is put in contact with a magnetic insulator. The resistance of the normal metal is influenced by the magnetization in the insulating magnet even though none of the charge current is able to pass through the magnet.

Spin Hall magnetoresistance image

The SMR effect is a result of spin current being able to flow from the metal into the magnetic insulator. The rate of this spin transfer depends on the magnetization direction of the insulator. The more spin current passing across the metal-insulator interface, the weaker the charge current flowing through the metal.

Read the full story Posted: May 15,2013