Perovskites - Page 2

Organic-inorganic hybrid perovskites are promising spintronics materials

Researchers from the University of Utah demonstrated that organic-inorganic hybrid perovskites are a promising material class for spintronics applications. These perovskite materials feature two contradictory properties - easily controlled electron spin and long spin lifetime (up to a nanosecond). This is a unique combination of two highly sought after properties for spintronics devices.

Hybrid organic-inorganic perovskite spintronics research (University of Utah)

The specific material used in this research is the hybrid perovskite methyl-ammonium lead iodine (CH3NH3PbI3). In their study, a thin film of this material was placed in front of an ultrafast laser that was used to set the electron's spin orientation and also observe the spin precession.

Read the full story Posted: May 30,2017

Will perovskites hold the key to spin-based quantum computing?

Researchers from the Energy Department’s National Renewable Energy Laboratory (NREL), quite accidentally, discovered that perovskite materials, grown using solution processing, exhibit the optical Stark effect at room temperatures.

The NREL team used the Stark effect to remove the degeneracy of the excitonic spin states within the perovskite sample. The optical Stark effect can be used to create promising technologies, including the potential to be used as an ultrafast optical switch. In addition, it can be used to control or address individual spin states, which is needed for spin-based quantum computing.

Read the full story Posted: Sep 06,2016

Will Perovskites be the future of solar cells, batteries, sensors, lasers and displays?

Spintronics-Info takes great pride in inviting its readers to check out Perovskite-Info.com, our new site focused on perovskite developments, applications and market. We treat it with the same amount of care and deliberation as our other sites, to bring you only the best and most up-to-date picture of the happenings in the field.

Perovskites are a fascinating group of materials that share a similar structure and display a myriad of exciting properties like superconductivity, magnetoresistance and more. These easily synthesized materials are considered the future of solar cells, as their distinctive structure makes them perfect for enabling low-cost, efficient photovoltaics. They are also predicted to play a role in next-gen electric vehicle batteries, sensors, displays, lasers and much more.

Read the full story Posted: Nov 21,2015

Manganites can change its stripes from fluctuating to static and back

Manganites are compounds of manganese oxides which are feature colossal magnetoresistance - and are promising candidates for spintronics applications. Researchers from the University of Colorado discovered that 2D bilayer manganite (a lanthanum strontium manganese oxide) can change its stripes from fluctuating to static and back. Magnatide stripe are regions where where the material’s electrical charges gather and concentrate. Other so-called correlated-electron materials also have stripes, including many high-temperature superconductors having the same crystal structure: arrangements of layers of atoms named for the mineral perovskite.

Manganite stripes photo

The results mean that the material can switch from a metallic state (a conductor) to an insulator. This is the first good insight into what happens to the electronic properties of a material when stripes 'fluctuate'. It establishes the existence of a distinct new phase of the material, which the researchers call fluctuating bi-stripes.

Read the full story Posted: Jul 17,2011