Optically-assisted MRAM could be a thousand time more efficient then current MRAM devices

Researchers from the Moscow Institute of Physics and Technology, in collaboration with researchers from Germany and the Netherlands have developed a new memory technology they call optically-assisted MRAM which is based on changing the spin state via THz pulses.

The researchers say that the new technique is extremely efficient (the power required to switch a "bit" will be a thousand times smaller compared to current MRAM devices) and fast.

Perovskites are promising as spintronic materials, researchers develop two new perovskite spintronics devices

Researchers from the University of Utah developed two spintronics devices based on perovskite materials. The researchers use these new devices to demonstrate the high potential of perovksites for spintronics systems. This is a followup to the exciting results announced in 2017 by the same group that showed advantages of perovskites for spintronics.

Perovskite spintronics LED wavelength (Utah University)

The researchers use an organic-inorganic hybrid perovskite material that has a heavy lead atom that features strong spin-orbit coupling and a long injected spin lifetime.The first device is a spintronic LED which works with a magnetic electrode instead of an electron-hole electrode. The perovskite LED lights up with circularly polarized electroluminescence.

Researchers discover a metallic antiferromagnet with a large magneto-optic Kerr effect

Researchers from the NIST in the US and the University of Tokyo have discovered a metallic antiferromagnet (Mn3Sn) that exhibits a large magneto-optic Kerr (MOKE) effect, despite a vanishingly small net magnetization at room temperature.

MOKE measurements in non-collinear antiferromagnets

Compared to ferromagnetic materials, metallic antiferromagnets allow for faster dynamics and more densely packed spintronic devices due to the weak interactions between antiferromagnetic cells. The researchers believe that such materials hold promise for future antiferromagnetic spintronic devices, where the magnetic state could transduced optically and switched either optically or by applying current.

Researchers discover a way to convert spin information into light signals

Reseaerchers from TU Delft developed a method to convert the spin information into light signals at room temperature. The researchers hope that this method could enable opto-spintronics devices.

The researchers used a device made from a thin silver thread and a 2D tungsten disulfide film on top. Using circularly polarised light, the researchers created excitons with a specific rotational direction (that could be intitialized using the rotational direction of the laser light). The excitons emit photons when they relax. And the emitted light contains the spin information.

Researchers manage to generate and manipulate the surface spin current in topological insulators

Researcherrs from Likoping University in Sweden demonstrated a method to generate and manipulate the surface spin current in topological insulators.

Transferring spin-oriented electrons (Linkoping)

The researchers used a combination of a topological insulator (Bismuth Telluride, Bi2Te3) and a regular GaAs semiconductor. The electrons were generated with the same spin in the GaAs using polarized light. The electrons were then transferred to the TI.