Researchers from the Madrid Institute for Advanced Studies in Nanoscience (IMDEA) and the University of Sevilla have measured for the first time the electrical conductivity of a single carbon nanotube with spin-crosslinked molecules inside it.
Iron-based SCO molecules encapsulated in a single carbon nanotube. Credit: Nature Communications
Magnetic molecules could add a new twist to conventional electronics. In particular, spin-crossover (SCO) molecules belong to a family of zero-dimensional (0D) functional units that display a radical spin switch triggered by an electro-structural change activatable by external stimulus such as light, pressure or temperature. The spin switch confers SCO molecules excellent capabilities and functionalities for implementation in nano-electronics. However, their insulating character has so far prevented these molecules from being fully exploited. Several groups have embedded SCO molecules into matrices of conductive materials but the results have not been fully compatible with the requirements of nanoscale devices.