Researchers develop a generic approach towards intrinsic magnetic second-order topological insulators
Researchers from Monash University, part of the FLEET Centre, and China's Weifang University, have reported a generic approach towards intrinsic magnetic second-order topological insulators - materials that can be beneficial for spintronics.
Two-dimensional ferromagnetic semiconductors, such as CrI3, Cr2Ge2Te6, and VI3, have been extensively studied in recent years and are fundamental to spintronics. Topological insulators are materials with unique properties where the interior is insulating, but the boundary can conduct electrons. In three-dimensional topological insulators like Bi2Se3, the surface hosts two-dimensional Dirac fermions. Second-order topological insulators, a new concept extending the idea of topological insulators, exhibit (m-2)-dimensional boundary states in m-dimensional materials, such as one-dimensional hinge states in three-dimensional materials and zero-dimensional corner states in two-dimensional materials.