Researchers examine coherent spin dynamics between electron and nucleus within a single atom
Researchers from Delft University of Technology and Karlsruhe Institute of Technology (KIT) have initiated a controlled movement in the heart of an atom, causing the atomic nucleus to interact with one of the electrons in the outermost shells of the atom. This electron could be manipulated and read out through the needle of a scanning tunneling microscope. The research offers prospects for storing quantum information inside the nucleus, where it is safe from external disturbances.
The team studied a single titanium atom - a Ti-47 atom, that has one neutron less than the naturally abundant Ti-48, which makes the nucleus slightly magnetic. This magnetism, or the 'spin', can be seen as a sort of compass needle that can point in various directions. The orientation of the spin at a given time constitutes a piece of quantum information.