You are here

Perfect zigzag-edged graphene ribbons highly attractive for Spintronics applications?

Mar 30, 2016

Researchers have succeeded, for the first time, in producing graphene nanoribbons (GNRs) with perfect zigzag edges. Electrons on these zigzag edges exhibit different (and coupled) rotational spin - which means they could be highly attractive for next-gen Spintronics devices.

GNRs with eprfect zigzag edges image

In their work, the research team describes how it managed to synthesize GNRs with perfectly zigzagged edges using suitable carbon precursor molecules and a perfected manufacturing process. The zigzags followed a very specific geometry along the longitudinal axis of the ribbons.

Graphene coated cobalt to greatly benefit spintronic devices

Dec 23, 2015

Researchers from France's Joseph Fourier University discovered that coating a cobalt film in graphene could double the film's perpendicular magnetic anisotropy (PMA), so that it reaches a value 20 times higher than that of traditional metallic cobalt/platinum multilayers.

Graphene coated cobalt to greatly benefit spintronic devices image

High-PMA materials are being researched for their applications in next-generation spintronic devices.

New room-temperature tunnel device developed using graphene as tunnel barrier and transport channel

Jul 17, 2015

Researchers from the U.S. Naval Research Laboratory (NRL) developed a new type of room-temperature tunnel device structure in which the tunnel barrier and transport channel are both made of graphene.

NRL scientists use graphene as tunnel barrier for spintronics image

In this new design, hydrogenated graphene acts as a tunnel barrier on another layer of graphene for charge and spin transport. The researchers demonstrated spin-polarized tunnel injection through the hydrogenated graphene, and lateral transport, precession and electrical detection of pure spin current in the graphene channel. The team sasy that the spin polarization values are higher than those found using more common oxide tunnel barriers, and spin transport at room temperature.

EU's Graphene Flagship is looking for a partner company for spintronics research

Jan 28, 2015

The Graphene Flagship announced a €350,000 work package that explores the potential of graphene spintronics for future devices and applications. The GF is searching for a new partner company to support device development and commercialisation of graphene spintronics, by applying it in specific device architectures dedicated to commercially viable applications and determining the required figures of merits.

The project's budget is for the period 1 April 2016 – 31 March 2018, and includes devices which require optimized (long distance) spin transport, spin-based sensors, and new integrated two-dimensional spin valve architectures. The Graphene Flagship expects that at the start of the Horizon 2020 phase (April 2016), spin injection and spin transport in graphene and related materials will have been characterised and the resulting functional properties will have been understood and modeled.

A new method introduces magnetism to graphene while preserving its electronics properties

Jan 27, 2015

Researchers from the University of California at Riverside developed a way to introduce magnetism in graphene while still preserving electronics properties. This new method is superior to doping as it does not damage graphene's electronic properties.

magnetic graphene spintronics riverside university image

The research team used yttrium iron garnet grown using laser molecular beam epitaxy. They placed a single layer of graphene on an atom-thick sheet of yttrium iron garnet, and discovered that graphene “borrowed” the magnetic properties of the material. The researchers state that they managed to avoid interfering with graphene’s electrical transport properties by using the electric insulator compound.

Powerful magnet developed, can selectively control of the flow of spins

Dec 16, 2014

Researchers from Spain discovered a way of using lead atoms and graphene to create a powerful magnetic field by the interaction of the electrons' spin with their orbital movement. The scientists believe that this discovery could come in handy for spintronics applications.

The researchers laid a layer of lead on a layer of graphene, grown over an iridium crystal. This way, the lead forms 'islands' below the graphene and the electrons of this 2D material behave as if in the presence of a huge 80-tesla magnetic field, which allows for the selective control of the flow of spins. The scientists also state that under these conditions certain electric states are immune to defects and impurities.