June 2023

Researchers report Q-silicon that could advance the integration of spintronics with microelectronics on a chip

Researchers at North Carolina State University (NCSU) have reported a new distinct form of silicon called Q-silicon which, among other interesting properties, is ferromagnetic at room temperature. The team's recent findings could lead to advances in quantum computing, including the creation of a spin qubit quantum computer that is based on controlling the spin of an electron.

“The discovery of Q-silicon having robust room temperature ferromagnetism will open a new frontier in atomic-scale, spin-based devices and functional integration with nanoelectronics,” said Jay Narayan, the John C. Fan Family Distinguished Chair in Materials Science and corresponding author of the paper describing the work.

Read the full story Posted: Jun 29,2023

Researchers report non-volatile electric control of magnetic and topological properties of MnBi2Te4 thin films

Researchers from Oak Ridge National Laboratory (ORNL) have proposed a mechanism to control the magnetic properties of topological quantum material (TQM) by using magnetoelectric coupling: a mechanism that uses a heterostructure of TQM with two-dimensional (2D) ferroelectric material, which can dynamically control the magnetic order by changing the polarization of the ferroelectric material and induce possible topological phase transitions. 

The novel concept was demonstrated using the example of the bilayer MnBi2Te4 on ferroelectric In2Se3 or In2Te3, where the polarization direction of the 2D ferroelectrics determines the interfacial band alignment and consequently the direction of the charge transfer. This charge transfer, in turn, enhances the stability of the ferromagnetic state of MnBi2Te4 and leads to a possible topological phase transition between the quantum anomalous Hall (QAH) effect and the zero plateau QAH.

Read the full story Posted: Jun 23,2023

Teaching an old equation new tricks - researchers open new avenues for the interaction of optical beams with spins and magnetic moments

Researchers from the Hebrew University of Jerusalem in Israel have made a recent discovery that could change the face of spintronics research.

A spintronics device developed by Professor Capua's lab

They discovered that the most important equation used to describe magnetization dynamics, namely the Landau-Lifshitz-Gilbert (LLG) equation, also applies to the optical domain. Consequently, they found that the helicity-dependent optical control of the magnetization state emerges naturally from their calculations. This is a very surprising result since the LLG equation was considered to describe much slower dynamics and it was not expected to yield a meaningful outcome also at the optical limit.

Read the full story Posted: Jun 22,2023

Researchers report electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide

Researchers from Purdue University, Pennsylvania State University and Japan's National Institute for Materials Science (NIMS) have reported electrically tunable moiré magnetism in twisted double bilayers (a bilayer on top of a bilayer with a twist angle between them) of layered antiferromagnet chromium triiodide. 

Using magneto-optical Kerr effect microscopy, the team observed the coexistence of antiferromagnetic and ferromagnetic order with non-zero net magnetization—a hallmark of moiré magnetism. Such a magnetic state extends over a wide range of twist angles (with transitions at around 0° and above 20°) and exhibits a non-monotonic temperature dependence. The researchers also demonstrated voltage-assisted magnetic switching. The observed non-trivial magnetic states, as well as control via twist angle, temperature and electrical gating, are supported by a simulated phase diagram of moiré magnetism.

Read the full story Posted: Jun 20,2023

Researchers use unique crystals to demonstrate electric field control of magnetism

Researchers from the Chinese Academy of Sciences (CAS) and the University of Science and Technology of China have demonstrated considerable control of magnetism at low electric fields (E) at room temperature. The E-induced phase transformation and lattice distortion were found to lead to the E control of magnetism in multiferroic BiFeO3-based solid solutions near the morphotropic phase boundary (MPB). 

Multiferroic materials, with magnetic and ferroelectric properties, are promising for multifunctional memory devices. Magnetoelectric-based control methods in insulating multiferroic materials require less energy and have potential for high-speed, low-power information storage applications. BiFeO3 is a room-temperature multiferroic material with potential for use in spintronics devices, but its weak ferromagnetic and magnetoelectric effects and high voltage required for manipulation are weaknesses. In their recent study, the researchers grew single crystals of the multiferroic 0.58BiFeO3-0.42Bi0.5K0.5TiO3 (BF-BKT), which lies in the tetragonal region adjacent to the MPB.

Read the full story Posted: Jun 14,2023

Scientists predict "parallel circuits" of spin currents in antiferromagnets

A group of physicists, led by Prof. SHAO Dingfu from the Hefei Institutes of Physical Science (HFIPS) of the Chinese Academy of Sciences (CAS), has predicted "parallel circuits" of spin currents in antiferromagnets, which can accelerate spintronics.

Spin-polarized electric currents play a central role in spintronics, due to the capabilities of manipulation and detection of magnetic moment directions for writing and reading 1s and 0s. Currently, most spintronic devices are based on ferromagnets, where the net magnetizations can efficiently spin polarize electric currents. Antiferromagnets, with opposite magnetic moments aligned alternately, are not quite as investigated but may promise even faster and smaller spintronic devices.

Read the full story Posted: Jun 11,2023

New $7.5M project to leverage atomic-scale defects for next-generation information processing

A new $7.5 million project, led by the University of Michigan, will embrace lines of shifted atoms, or dislocations, in electronic materials (which have long been considered detrimental due to their tendency to impede the flow of electricity), and use them to possibly enable faster and more efficient information processing.

Funded by the Department of Defense, the project aims to understand how dislocations could be used as nano-pipelines to channel electrons while manipulating their spins. The project also involves researchers from the University of Illinois Urbana-Champaign.

Read the full story Posted: Jun 08,2023

Researchers examine temperature-dependent exciton-polariton relaxation mechanisms in hybrid organic-inorganic perovskites

A team of researchers at MIT, Complutense University of Madrid and the University of Pavia has designed a perovskite-based device that combines aspects of electronics and photonics, that could lead to new kinds of computer chips or quantum qubits.

Study reveals new ways for exotic quasiparticles to “relax” image

The new work involved sandwiching tiny flakes of a perovskite material in between two precisely spaced reflective surfaces. By creating these perovskite sandwiches and stimulating them with laser beams, the researchers were able to directly control the momentum of certain “quasiparticles” within the system. Known as exciton-polariton pairs, these quasiparticles are hybrids of light and matter. Being able to control this property could ultimately make it possible to read and write data to devices based on this phenomenon.

Read the full story Posted: Jun 01,2023