December 2022

Researchers gain better understanding of the magnetization reversal mechanism through topological data analysis

Researchers develop a super-hierarchical and explanatory analysis of magnetization reversal that could improve the reliability of spintronics devices. The researchers, led by Professor Masato Kotsugi from Japan's Tokyo University of Science, have developed an AI-based method for analyzing material functions in a more quantitative manner.

The team quantified the complexity of the magnetic domain structures using persistent homology, a mathematical tool used in computational topology that measures topological features of data persisting across multiple scales. The team further visualized the magnetization reversal process in two-dimensional space using principal component analysis, a data analysis procedure that summarizes large datasets by smaller “summary indices,” facilitating better visualization and analysis.

Read the full story Posted: Dec 13,2022

Researchers develop a scaled-up spintronic probabilistic computer

Researchers at Tohoku University, the University of Messina and the University of California, Santa Barbara (UCSB) have developed a scaled-up version of a probabilistic computer (p-computer) with stochastic spintronic devices that is suitable for hard computational problems like combinatorial optimization and machine learning.

The constructed heterogeneous p-computer consisting of stochastic magnetic tunnel junction (sMTJ) based probabilistic bit (p-bit) and field-programmable gate array (FPGA). ©Kerem Camsari, Giovanni Finocchio, and Shunsuke Fukami et al.

A p-computer harnesses naturally stochastic building blocks called probabilistic bits (p-bits). Unlike bits in traditional computers, p-bits oscillate between states. A p-computer can operate at room-temperature and acts as a domain-specific computer for a wide variety of applications in machine learning and artificial intelligence. Just like quantum computers try to solve inherently quantum problems in quantum chemistry, p-computers attempt to tackle probabilistic algorithms, widely used for complicated computational problems in combinatorial optimization and sampling.

Read the full story Posted: Dec 08,2022