Researchers develop a simple method to manipulate the magnetization angle of magnetite

Researchers from the Tokyo University of Science have developed an all-solid redox device composed of magnetite (Fe3O4) thin film and a solid electrolyte containing lithium ions that successfully manipulated the magnetization angle at room temperature.

Magnetite magnetization manipulation (Tokyo University of Science)

The researchers say they have developed a surprisingly simple yet efficient strategy to manipulate the magnetization angle in magnetite, a typical ferromagnetic material. This magnetization rotation is caused by the change of spin-orbit coupling due to electron injection into a ferromagnet. The new approach leverages a reversible electrochemical reaction.

UNSW researchers discover that removing random doping in quantum electronic devices dramatically improves their reproducibility

Researchers from the University of New South wales (UNSW) discovered that removing random doping in quantum electronic devices dramatically improves their reproducibility. This could be highly useful in creating future quantum spintronics devices.

Doped and undoped wafers for quantum spintronics devices (UNSW)

In their paper, the researchers show that the reproducibility problem in quantum devices comes from the random spatial position of dopants in quantum devices. This is why removing the dopants has such a big effect.

Researchers develop a spintronics memory that switches its magnetization in 6 picoseconds

An international group of researchers, led by the CNRS, developed a new technique that can switch magnetization in only six picoseconds, which is almost 100-times faster than current state-of-the-art spintronics. The new technique is also highly efficient.

Picoseconds switching of magnetic materials, CNRS

The experimental design used to create the ultra-fast magnetization switching included an optical pump directed at the photoconductive switch, which converts the light into 6-picosecond electric pulses. The structure guides these pulses toward the magnet. When the pulses reach the magnet, they trigger the magnetization switching.

The ERC grants €1.9 million towards a new magnetic spintronics insulators project

The European Research Council (ERC) granted a €1.9 million new project to Prof. Can Onur Avci, in the field of magnetic insulators for spintronics devices. Prof. Aci will move to ICMAB and be integrated at the ICMAB Research Line 3 (RL3) “Oxides for new generation electronics”. The activities of this research center span from multiferroics, flexoelectric materials oxide photonics and spintronics to ferroelectric memory arrays and GHz-THz magnetoelectrics.

The awarded project is called MAGNEPIC, or “Magnetic Insulators: An Enabling Platform for Innovative Spintronic Concepts”. The project full goal is to study magnetic insulators to develop novel device concepts and explore emerging physical phenomena that could be useful for future spintronics research and applications.

Researchers show how to transmit high frequency alternating spin currents using antiferromagnetic spintronics devices

Researchers from Exeter University, in collaboration with the Universities of Oxford, California Berkeley, and the Advanced and Diamond Light Source have experimentally demonstrated that high frequency alternating spin currents can be transmitted by, and sometimes amplified within, thin layers of antiferromagnetic NiO.

The researchers say that these results demonstrate that the spin current in thin NiO layers is mediated by evanescent spin waves, a mechanism akin to quantum mechanical tunnelling. This could lead to more efficient future wireless communication technology based on such antiferromagnetic spintronics devices.

Researchers discover that current flow in a ferromagnetic conductor can produce a magnetic-moment directed spin polarization

Researchers from NYU and IBM Research have created a spintronics device from a ferromagnetic conductor and discovered that current flow in the conductor can produce a spin polarization that is in a direction set by its magnetic moment.

This discovery means that magnetic moment direction can be set in just about any desired direction to then set the spin polarization - this is not possible using the contours of the spin Hall effect in non-magnetic heavy metals.

Researchers develop a magnetic sensor that is made from only 11-atoms

Researchers from Delft University of Technology developed a magnetic wave sensor that is only 11 atoms in size. The sensor includes an antenna, a readout capability, a reset button and a memory unit.

11-Atom magnetic sensor, Delft University

The researchers say that this tiny sensor will be used to learn more about the behavior of magnetic waves, and could one day be the basis of spintronics devices.

KAIST researchers show how to use graphene as an active spintronic component

Researchers from the Korea Advanced Institute of Science and Technology (KAIST) have developed a new method to apply graphene as an active spintronic component for generating, controlling, and detecting spin current without ferromagnetic electrodes or magnetic fields.

The KAIST researchers observed highly efficient charge-to-spin interconversion via the gate-tunable Rashba-Edelstien effect (REE) in graphene heterostructures. The researchers used graphene stacked on top of a large spin-orbit coupling transition metal dichalcogenide material (2H-TaS2).

Researchers incorporate an antiferromagnetic layer in an MTJ for the first time

Researchers from the University of Arizona discovered that in common Magnetic Tunnel Junctions (MTJ), there's a thin (2D) layer of Iron Oxide. This layer was found to act as a contaminant which lowers the performance achieved by MTJs.

Magnetic Tunnel Junction schematic (UArizona)

This Iron Oxide layer, however, can also be seen as a blessing - the researchers discovered that the layer behaves as a so-called antiferromagnet at extremely cold temperatures (below -245 degrees Celsius). Antiferromagnets are promising as these can be manipulated at Terahertz frequencies, about 1,000 times faster than existing, silicon-based technology. This is the first research that shows how Antiferromagnets can be controlled as part of MTJs.

Researchers receive grant to develop next-generation highly efficient spintronics-based AI hardware

Researchers from Aarhus University in Denmark received a EUR 4.4 million grant from the EU FET to develop novel spintronics-based AI hardware. The researcher say that their suggested design can end up having 100,000 times the performance of the state-of-the-art AI systems of today.

SpinAge spintronics hardware poster

The project, called SpinAge, will revolve around a neuromorphic computer system (NCS) design that is unique, scalable and highly energy efficient (the researchers estimate that the new design will be more efficient than current designs by at least a factor of 100). The synaptic neurons in this system will be based on spintronics technology.