Scientists find an exotic 'multiferroic' state in a 2D material

Scientists from MIT, Arizona State University, National Institute for Materials Science in Tsukuba, Université de Liège in Belgium and Italy's CNR-SPIN have discovered an exotic "multiferroic" state in a material that is as thin as a single layer of atoms.

Their observation is the first to confirm that multiferroic properties can exist in a perfectly two-dimensional material. The findings could pave the way for developing smaller, faster, and more efficient data-storage devices built with ultrathin multiferroic bits, as well as other new nanoscale structures.

Read the full story Posted: Feb 28,2022

Spin-orbit–driven ferromagnetism detected in 'magic-angle' twisted bilayer graphene

A research team from Brown University has found a surprising new phenomenon that can arise in 'magic-angle graphene' - two sheets of graphene that are stacked together at a particular angle with respect to each other, giving rise to various fascinating behaviors. In a recent research, the team showed that by inducing a phenomenon known as spin-orbit coupling, magic-angle graphene becomes a powerful ferromagnet.

"Magnetism and superconductivity are usually at opposite ends of the spectrum in condensed matter physics, and it's rare for them to appear in the same material platform," said Jia Li, an assistant professor of physics at Brown and senior author of the research. "Yet we've shown that we can create magnetism in a system that originally hosts superconductivity. This gives us a new way to study the interplay between superconductivity and magnetism, and provides exciting new possibilities for quantum science research."

Read the full story Posted: Jan 09,2022

Novel semiconductor sheds new light on Anomalous Hall Effect

Researchers at Tokyo Institute of Technology, the University of Tokyo, Japan Science and Technology Agency (JST), RIKEN and Comprehensive Research Organization for Science and Society (CROSS) have demonstrated a large, unconventional anomalous Hall resistance in a new magnetic semiconductor in the absence of large-scale magnetic ordering.

This validates a recent theoretical prediction and provides new insights into the anomalous Hall effect, a quantum phenomenon that has previously been associated with long-range magnetic order.

Read the full story Posted: Jan 02,2022

Stacking order in a 2D magnet produces Dirac magnons

Researchers in the UK, South Korea and the U.S recently discovered that the two-dimensional layered magnet chromium triiodide (CrI3) acts as a topological magnon insulator in the absence of an external magnetic field. This result could have potential applications for so-called dissipationless spintronics in which electrons are used to transmit and store information in an ultra-fast and ultra-low power fashion.

Thanks to detailed neutron scattering measurements and fine analysis, the team has found that this phenomenon comes from the way in which the layers in the material are stacked together. That is, while a single layer of CrI3 is ferromagnetic, two stacked layers are antiferromagnetic which counterintuitively is different from that in ferromagnetic bulk.

Read the full story Posted: Nov 14,2021

Researchers discover unconventional magnetism at the surface of Sr2RuO4

The attractive properties of Sr2RuO4, like its ability to carry lossless electrical currents and magnetic information simultaneously, make it a material with great potential for the development of future technologies like superconducting spintronics and quantum electronics. An international research team, led by scientists at the University of Konstanz, was recently able to answer one of the most interesting open questions on Sr2RuO4: why does the superconducting state of this material exhibit some features that are typically found in materials known as ferromagnets, which are considered being antagonists to superconductors?

New type of magnetism unveiled in an iconic material imageSpin polarized muon particles (red spheres with arrows) probing a new form of magnetism in the perovskite superconductor Sr2RuO4. Credit: Konstanz University

The team has found that the material hosts a new form of magnetism, which can coexist with superconductivity and exists independently of superconductivity as well.

Read the full story Posted: Oct 06,2021

Researchers demonstrate programmable dynamics of exchange-biased domain wall via spin-current-induced antiferromagnet switching

Researchers from Daegu Gyeongbuk Institute of Science and Technology (DGIST) in Korea have demonstrated a novel route to tune and control the magnetic domain wall motions employing combinations of useful magnetic effects inside very thin film materials. The research offers a new insight into spintronics and a step towards new ultrafast, ultrasmall, and power-efficient IT devices.

The new study demonstrates a new way to handle information processing using the movement of the magnetic states of the thin film device. It takes advantage of some unusual effects that occur when materials with contrasting types of magnetic material are squashed together. The research focuses on a device that combines ferromagnetic and antiferromagnetic materials, in which the directions of electron spins align differently within the respective magnetic materials.

Read the full story Posted: Aug 11,2021

New 2D magnet that operates at room temperature could boost spintronic memory and quantum computing

Researchers from Berkeley Lab, UC Berkeley, UC Riverside, Argonne National Laboratory, Nanjing University and the University of Electronic Science and Technology of China, have developed an ultrathin magnet that operates at room temperature. This development could lead to new applications in computing and electronics - such as high-density, compact spintronic memory devices - and new tools for the study of quantum physics.

"We're the first to make a room-temperature 2D magnet that is chemically stable under ambient conditions," said senior author Jie Yao, a faculty scientist in Berkeley Lab's Materials Sciences Division and associate professor of materials science and engineering at UC Berkeley. "This discovery is exciting because it not only makes 2D magnetism possible at room temperature, but it also uncovers a new mechanism to realize 2D magnetic materials," added Rui Chen, a UC Berkeley graduate student in the Yao Research Group and lead author on the study.

Read the full story Posted: Jul 20,2021

Gate-controlled magnetic phase transition in a van der Waals magnet

An international collaboration led by RMIT has achieved record-high electron doping in a layered ferromagnet, causing magnetic phase transition with significant promise for future electronics.

Control of magnetism (or spin directions) by electric voltage is vital for developing future, low-energy high-speed nano-electronic and spintronic devices, such as spin-orbit torque devices and spin field-effect transistors. Ultra-high-charge, doping-induced magnetic phase transition in a layered ferromagnet allows promising applications in antiferromagnetic spintronic devices.

Read the full story Posted: Jun 29,2021

Researchers find a key cause of energy loss in spintronic materials

A study led by researchers at the University of Minnesota Twin Cities has found a property of magnetic materials that may enable engineers to develop more efficient spintronic devices in the future.

One of the main obstacles to developing better spintronic devices is an effect called “damping,” which is where the magnetic energy essentially escapes from the materials, making them less efficient. Traditionally, scientists have ascribed this property to the interaction between the electron’s spin and its motion. However, the team led by the University of Minnesota has proven that there is another factor – magnetoelastic coupling, i.e. the interaction between electron spin or magnetism and sound particles.

Read the full story Posted: Jun 14,2021

New material opens new opportunities for future spintronics-based magnetic memory devices

Researchers from Seoul National University, Pohang University of Science and Technology, Korea Atomic Energy Research Institute and the Center for Quantum Materials in Korea have designed a prototype of a non-volatile magnetic memory device entirely based on a nanometer-thin layered material, which can be tuned with a tiny current. This finding opens up a new window of opportunities for future energy-efficient magnetic memories based on spintronics.

The choice of magnetic material and device architecture depends on the fact that non-volatile memory technologies have to guarantee safe storage, but also reliable reading and writing access. Hard magnets are perfect for long-term memory storage, because they magnetize very strongly and are difficult to demagnetize. On the contrary, soft magnets are desirable for adding new information to the memory device, because their magnetization can be easily reversed during the writing process. Put simply, ideal magnetic materials can be kept at a hard magnetic state to ensure the stability of the stored information, but be soft on demand.

Read the full story Posted: Dec 28,2020