Perovskites are promising as spintronic materials, researchers develop two new perovskite spintronics devices

Researchers from the University of Utah developed two spintronics devices based on perovskite materials. The researchers use these new devices to demonstrate the high potential of perovksites for spintronics systems. This is a followup to the exciting results announced in 2017 by the same group that showed advantages of perovskites for spintronics.

Perovskite spintronics LED wavelength (Utah University)

The researchers use an organic-inorganic hybrid perovskite material that has a heavy lead atom that features strong spin-orbit coupling and a long injected spin lifetime.The first device is a spintronic LED which works with a magnetic electrode instead of an electron-hole electrode. The perovskite LED lights up with circularly polarized electroluminescence.

Researchers produce spin wave overtones in spintronic oscillators

Researchers from the University of Gothenburg have succeeded to produce spin wave overtones for the first time, which could enable faster wireless data communication based on spintronics devices.

Spintronic oscillators are devices in which spin waves are used to generate microwave signals in the gigahertz range. The new research shows how it is possible to produce spintronic oscillators that strengthen spin wave signals in several steps. This makes it possible to generate very high microwave frequencies with short wavelengths for use in spintronics and magnonics.

Researchers in the UK explore 2D hBN as a material for spin valves and MTJs

Researchers from the UK's Manchester University have explored opportunities presented by hexagonal boron nitride (hBN) as a prototypical high-quality two-dimensional insulator that can be used both as a barrier in MTJs and as for spin injection in lateral spin valves.

The research revealed the effect of point defects inevitably present in mechanically exfoliated hBN on the tunnel magnetoresistance of Co-hBN-NiFe MTJs. In particular, the researchers observe a marked enhancement of the magnetoresistance of the junction at well-defined bias voltages, indicating resonant tunneling through magnetic or 'spin-polarized' defect states.

Researchers report on the room temperature multiferroic behavior of Bismuth Iron Manganite thin films

Researchers of the NanoBioMedical center at Adam Mickiewicz University in Poznan- Poland, in collaboration with the University of Barcelona in Spain, have recently reported on the room temperature multiferroic behavior of Bismuth Iron Manganite (Bi(Fe0.5Mn0.5)O3) thin films, with a thickness below 40nm.

Multiferroic materials are promising for electronics due to the possibility of affecting their magnetic properties by electric means. In their article the team has not only shown the interdependence of both magnetic and electric properties at room temperature but has also shown the exceptional low magnetic damping of this material, making it one of the only known ferromagnetic and ferroelectric multiferroic with low damping.

Researchers observe a square lattice of merons and antimerons in a thin film helical magnet

Researchers from the RIKEN Center for Emergent Matter Science have managed for the first time to observe a square lattice of merons and antimerons - tiny magnetic vortices and antivortices. The magnetic merons (and antimerons) were formed in a thin plate of the helical magnet Co8Zn9Mn3.

The researchers were also able to induce a transformation between the square lattice of merons-antimerons and a hexagonal lattice of skyrmions, by finely varying a magnetic field applied perpendicularly to the thin film material.

MIT and BNL researchers demonstrate reversible “hydriding” of a heavy metal to electrically control magnetism

Researchers from MIT and the DoE Brookhaven National Laboratory designed a way to use hydrogen ions, drawn from airborne water molecules at room temperature, to electrically control magnetism in a thin magnetic film.

Water molecules - hydrogens ions, magnetic field switch image

The thin-film was made from cobalt, palladium and gadolinium oxide on a platinum base - and gold contacts. The hydrogen ions are used for reversible magneto-ionic switching in the thin film. This is the first time that scientists have demonstrated reversible “hydriding” of a heavy metal.