January 2023

Researchers demonstrate ultrafast coherent control of a skyrmion crystal

Researchers at Switzerland EPFL, China's Anhui University, Germany's University of Cologne and University of New Hampshire in the US have developed a technique that can visualize and control the rotation of a handful of spins arranged in a vortex-like texture at the fastest speed ever achieved. The breakthrough can advance spintronics devices like computer memory, logic gates, and high-precision sensors.

"The visualization and deterministic control of very few spins has not yet been achieved at the ultrafast timescales," says Dr. Phoebe Tengdin, a postdoc at EPFL, pointing out the very tight timeframes that this control needs to happen for spintronics to ever make the leap into applications. Now, the team developed a new technique that can visualize and control the rotation of a handful of spins arranged in a vortex-like texture, a kind of spin "nano-whirlpool" called a skyrmion.

Read the full story Posted: Jan 28,2023

Researchers find molecular films with spin diffusion length that could promote spintronics devices

Researchers from Osaka Metropolitan University and Osaka City University have succeeded in measuring spin transport in a thin film of specific molecules - a material well-known in organic light emitting diodes (OLEDs) - at room temperature. 

They found that this thin molecular film has a spin diffusion length of approximately 62nm, a length that could have practical applications in developing spintronics technology. In addition, while electricity has been used to control spin transport in the past, the thin molecular film used in this study is photoconductive, allowing spin transport control using visible light.

Read the full story Posted: Jan 25,2023

Researchers suggest method to improve the processing of antiferromagnetic devices for spintronic memory technologies

A team led by researchers at the National Institute of Standards and Technology (NIST), the University of South Florida (USF), Harvey-Mudd College and the University of the District of Columbia has discovered a route toward reducing the sputter damage during growth of Nanolayered Pt/Co/Ir-based Synthetic Antiferromagnets that delivers significant improvements in perpendicular magnetic anisotropy and interlayer exchange coupling energy.

Synthetic antiferromagnets (SAFs) are a core component for top-pinned magnetic tunnel junction memory systems in semiconductor production. Establishing low-damage sputtering techniques to protect the multiple interfaces between sub-nm thick constituent layers delivers improved SAF properties could be key to data retention in high-density, sub-10 nm diameter magnetic memory arrays.

Read the full story Posted: Jan 04,2023