September 2021

Researchers discover how magnetism occurs in 2D ‘kagome’ metal-organic frameworks

Scientists from Australia's Monash University (affiliated with Fleet, the Australian research council funded ‘Arc Centre of Excellence in Future low-energy Electronics Technologies’) have discovered how magnetism occurs in 2D ‘kagome’ metal-organic frameworks, opening the door to self-assembling controllable nano-scale electronic and spintronic devices.

Kagome materials have repeating patterns of hexagons and smaller triangles, with the hexagons touching at their tips. The word 'Kagome' comes from Japanese, relating to a basket weaving pattern.

Read the full story Posted: Sep 13,2021

Researchers use graphene and other 2D materials to create a spin field-effect transistor at room temperature

Researchers at CIC nanoGUNE BRTA in Spain and University of Regensburg in Germany have recently demonstrated spin precession at room temperature in the absence of a magnetic field in bilayer graphene. In their paper, the team used 2D materials to realize a spin field-effect transistor.

Sketch of a graphene-WSe2 spin field-effect transistor imageSketch of the spin field-effect transistor. Image from article

Coherently manipulating electron spins at room temperature using electrical current is a major goal in spintronics research. This is particularly valuable as it would enable the development of numerous devices, including spin field-effect transistors. In experiments using conventional materials, engineers and physicists have so far only observed coherent spin precession in the ballistic regime and at very low temperatures. Two-dimensional (2D materials), however, have unique characteristics that could provide new control knobs to manipulate spin procession.

Read the full story Posted: Sep 08,2021

Researchers examine 'magnon' origins in 2D van der Waals magnets

Rice University researchers have confirmed the topological origins of magnons, magnetic features they discovered three years ago in a 2D material that could prove useful for encoding information in the spins of electrons.

The discovery provides a new understanding of topology-driven spin excitations in materials known as 2D van der Waals magnets. The materials are of growing interest for spintronics - for computation, storage and communications.

Read the full story Posted: Sep 04,2021