May 2021

“Bite” defects revealed in graphene nanoribbons

Two recent studies by a collaborative team of scientists from two NCCR MARVEL labs have identified a new type of defect as the most common source of disorder in on-surface synthesized graphene nanoribbons (GNRs).

Combining scanning probe microscopy with first-principles calculations allowed the researchers to identify the atomic structure of these so-called "bite" defects and to investigate their effect on quantum electronic transport in two different types of graphene nanoribbon. They also established guidelines for minimizing the detrimental impact of these defects on electronic transport and proposed defective zigzag-edged nanoribbons as suitable platforms for certain applications in spintronics.

Read the full story Posted: May 26,2021

Researchers report ultrastrong magnon–magnon coupling dominated by antiresonant interactions

A discovery in the spintronics-based quantum technology field started when slightly misaligned orthoferrite crystals (iron oxide crystals with the addition of one or more rare-earth elements) turned up at a Rice University laboratory.

Rice physicist Junichiro Kono, alumnus Takuma Makihara and their collaborators found an orthoferrite material, in this case yttrium iron oxide, placed in a high magnetic field showed uniquely tunable, ultrastrong interactions between magnons in the crystal. Magnons are quasiparticles, constructs that represent the collective excitation of electron spin in a crystal lattice.

Read the full story Posted: May 26,2021

Researchers observe chiral-spin rotation of non-collinear antiferromagnets

Researchers at Tohoku University and the Japan Atomic Energy Agency (JAEA) have reported a new spintronic phenomenon – a persistent rotation of chiral-spin structure.

The researchers studied the response of chiral-spin structure of a non-collinear antiferromagnet Mn3Sn thin film to electron spin injection and found that the chiral-spin structure shows persistent rotation at zero magnetic field. Moreover, their frequency can be tuned by the applied current.

Read the full story Posted: May 24,2021

Researchers design new method to control the alignment state of magnetic atoms in an antiferromagnetic material

Scientists from Daegu Gyeongbuk Institute of Science and Technology (DGIST) and Korea Research Institute of Standards and Science (KRISS) have found a new way to control the alignment state of magnetic atoms in an antiferromagnetic material, showing promise for the development of tiny sensors and memory devices.

The researchers' new approach features a controllable exchange bias effect, which enables the asymmetric magnetic actions of devices comprised of complex combination structure of different types of magnetic materials.

Read the full story Posted: May 20,2021

Qnami raises $4.4 Million in Series A funding

Qnami, a Switzerland-based company that develops fundamental new technology using quantum mechanics, has announced the closing of a &4.4 Million USD Series A financing round.

The company intends to use the funds to extend its patented quantum microscope technology into applications enabling the design and production of quantum computers and spintronics devices, plus scaling the launch of the Qnami ProteusQ™, its first commercial Quantum Microscope.

Read the full story Posted: May 11,2021

Magnetic graphene could boost generation of spin currents

A team of researchers from The University of Groningen and Columbia University have found that 2D spin-logic devices could benefit from magnetic graphene that can efficiently convert charge to spin current, and can transfer this spin-polarization over long distances.

Graphene is known amongst 2D materials for transporting spin information, but cannot generate spin current unless its properties are modified – conventionally cobalt ferromagnetic electrodes are used for injecting and detecting the spin signal.

Read the full story Posted: May 09,2021